
NASA Contractor Report 194913

ICASE Report No. 94-34

/ •
/

IC S
EXTENDING HPF FOR ADVANCED

DATA PARALLEL APPLICATIONS

Barbara Chapman

Piyush Mehrotra
Hans Zima

(NASA-CR-194913) EXTENDING HPF FOR
ADVANCEO _ATA PARALLEL APPLICATIONS
Final Report (ICASE) 31 p

N94-34387

Unclas

G3/61 0013731

Contract NAS I - 19480

May 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

Extending HPF For Advanced Data Parallel

Applications *

Barbara Chapman a Piyush Mehrotra b Hans Zima _

_Institute fl_r Software Technology and Parallel Systems,

University of Vienna, Brfinner Strasse 72, A-1210 Vienna, Austria

E-Mail: {barbara, zima }:(_par.univie. at.at

bICASE, MS 132C, NASA Langley Research Center, Hampton VA. 23681 USA

E-Mail: pm:;_icase.edu

Abstract

The stated goal of High Performance Fortran (HPF) was to "address the problems

of writing data parallel programs where the distribution of data affects performance".

After examining the current version of the language we are led to the conclusion that

HPF has not fully achieved this goal. While the basic distribution functions offered

by the language - regular block, cyclic, and block cyclic distributions can support

regular numerical algorithms, advanced applications such as particle-in-cell codes or

unstructured mesh solvers cannot be expressed adequately. We believe that this is a

major weakness of tlPF, significantly reducing its chances of becoming accepted in the

numerical community. The paper discusses the data distribution and alignment issues

in detail, points out some flaws in the basic language, and outlines possible filture

paths of development. Furthermore, we briefly deal with the issue of task parallelism

and its integration with the data parallel paradigm of HPF.

*The work described in this paper was partially supported by the Austrian Research Foundation (FWF

('rant P8989-PItY) and by the Austrian Ministry for Science and Research (BMWF (_rant GZ 308.9281-

IV/3/93). This research was also supported by the National Aeronautics and Space Administration under
NASA (',ontract No. NASl-19480, while the authors were in residence at ICASE, NASA Langley Research

(lenter, Hampton, VA 236_1.

1 Introduction

Tile High Performance Fortran Forum (HPFF), which convened during 1992, set itself the

task of defining language extensions for Fortran to facilitate data parallel pi-ogrannning on

a wide range of parallel architectures without sacrificing performance [8]. Much of tile work

t\)cussed on extending Fortran 90 with directives for specifying aligument and distrilmtion of

a program's data. These enable the programmer to influence the locality of computation by

controlling the manner in which tile data is mapped to processors. Other major extensions

include data parallel constructs, such as the FORALL statement and construct, and the

INDEPENDENT directive, along with a number of library routines.

A stated goal of the HPF forum was to "address the problems of writing data parallel

programs where the distribution of data affects performance" [8]. Even though the defined

extensions provide tile first steps towards such a portable programming interface, it is our

contention that they fall short of the overall goal.

In this paper we show that there is some important functionality which is missing from

the current HPF language definition. We indicate how this might be added to tlle language,

and state why it is needed. In several places, we give examples to illustrate the use of these

additional features. The set of all features that we propose for inclusion into the current

version of HPF will be informally subsumed under the name HPF +. We do not claim,

however, that HPF + is in any sense complete. In particular, we refrain from discussing any

of tile issues surrouuding I/O and the handling of large data sets. Our prime consideration

is functionality and semantics; we do not attempt to provide a full definition of the proposed

features, and sometimes use an ad-hoc syntax. In a few places, we use syntax from Vienna

Fortran [2, 17], which already provides solutions for some of the problems discussed in this

paper.

_Te assume throughout that the reader is familiar with the basic mechanisms of HPF for

mapping data. The full details are to be found in the HPF Language Specification [8].

The core of this paper is Section 2, in which we identify a range of application problems

that cannot be adequately dealt with in the context of the distribution and alignment Datures

of current I-tPF. We propose a number of new language features that address these issues.

Furthermore, we also point out some difficulties with the present definition of the basic

language. In Section 3, we outline some of the requirements posed by multidisciplinary

probh_ms, which need a capability to express task parMlelism and integrate it with data

parallelism. We propose a scheme that relies on the explicit creation of asynchronous tasks

and an object-oriented mechanism for providing these tasks with access to shared data.

(:oncluding remarks are to be found in Section 4.

2 Generalization of Data and Work Distributions

Much of HPF consists of constructs which may be used to specify tile mapping of data in

the program to an abstract set of processors. This is achieved via a two-level mapping: first,

data arrays are aligned with other objects, and then groups of objects are distributed onto

an array of abstract processors. These processors are then mapped to the physical processors

of tile target machine in an implementation-dependent manner.

The ALIGN directive is used to align elements of data arrays to other data arrays or

templates. Templates are abstract index spaces which can be used as a target for alignment

and may then be distributed in the same way as arrays. The DISTRIBUTE directive is

provided to control distribution of the dimensions of arrays or templates onto an abstract

set of processors. The distribution of a dimension may be described by selecting one of

a set of predefined primitives which permit block, cyclic or block-cyclic mapping of the

elements. Tile rules for alignment are more flexible: a linear function may be used to specify

the relationship between the mappings of two different data arrays. Mechanisms are also

provided to enable dynamic modification of both alignment and distribution; these are the

REALIGN and REDISTRIBUTE directives, respectively.

These language constructs suffice for the expression of a range of numerical applications

operating on regular data structures. However, more complex applications pose serious

difficulties. For example, modern codes in such important application areas as aircraft

modeling and combustion engine simulation often employ multiblock grids. Even if these

grids are to be distributed by block to processors, the constructs of the current HPF language

sl)ecification do not permit an efficient data mapping for these programs; as we will show in

the next subsection, this requires distributions to sections of the processor array in general.

HPF is even less equipped to handle advanced algorithms such as particle-in-cell codes,

adaptive multigrid solvers, or sweeps over unstructured meshes. Many of these problems

need more complex data distributions if they are to be executed effMently on a parallel

machine. Some of them may require tile user to control the execution of major do loops by

specifying which processor should perform a specific iteration. These are not provided by

HPF.

Some programs will require that data be distributed onto processor arrays of different

ranks: tile current language definition does not permit the user to prescribe or assume any

relationship between such processor arrays.

We discuss some of these topics in more detail in the remainder of this section, and

propose a number of language extensions which provide the required functionality, including

• distrib,tion to t)rocessor subsets (Section 2.1 & 2.2),

2

• processor views (Section 2.3),

• general block distributions (Section 2.4),

• indirect distributions (Section 2.5.1),

• user-defined distribution functions (Section 2.5.2), and

• on-clauses for tile control of tile work distribution in an INDEPENDENT loop (Sec-

tion 2.5.3).

Some of these problems and their solutions were discussed during tile HPFF meetings

and can be found in tile Journal of Development, Section 11 of the language draft [8].

2.1 Distribution to Processor Subsets - Multiblock Grid Codes

The ltPF DISTRIBUTE directive specifies tile distribution of data onto a processor array

which has been declared by the user. It does not permit distribution onto a part of the

processor array. Here, we give an example of a problem which may need this capability for

efficient execution, and describe a simple extension to current HPF which would permit it.

Scientific and engineering codes from diverse application areas may use multiple grids

to model the underlying problem domain. For example, in computational fluid dynamics a

complex aircraft structure may be modeled using multiple structured grids [15], so that tile

spacing of the grids and their shapes can be individually chosen to match the mlderlying

physical structure. A typical application run may use anywhere from 10 to 100 grids of

widely varying sizes and shapes.

Each sweep over the domain involves computation on tile individual grids before data

is exchanged between them. Thus, these types of applications exhibit at least two levels

of parallelism. At the outer level, there is coarse grain parallelism, since the computation

can be performed on each grid simultaneously. The internal computation on each grid, on

tile other hand, exhibits the typical loosely synchrollous data parallelism of structured grid

('()des. An efficient execution of such a code would require that the work is spread evenly

across tile target machine; this means that tile total number of grid points on each processor

should be roughly tile same, independent of the numt)er of grids and their shapes and sizes.

One possible way of distributing data is be to distribute the array of grids to the processors

so that each grid is mapped to exactly one processor. Along with exploiting t h(" outer level

of parallelism, this approach has two other drawbacks. First, the number of grids is not large

ill tnany applications, and may be significantly smaller than the number of processors of a

massively parallel machine th_ls restricting the amount of parallelism that can 1)e eff(wt.ively

utilized. Secondly,the grids may vary greatly in size, resulting in an unevenworkload o11

thoseprocessorswhich are involved in the computation.

Another possiblestrategy is to distribute eachof the grids independentlyonto all of the

processorsof the machine,enabling the parallelismwithin a grid to beexploited. This will

lead to a more even workload; however, the grids may not all be large enough for this to be

a reasonable solution.

Both of the above distribution strategies are likely to be ineflicient, particularly on ma-

chines with a large number of processors. A flexible alternative is to permit grids to be

separately distributed to a suitably sized subset of the available processors. This approach

allows both lewqs of parallelism to be exploited while providing the opportunity to balance

the workload.

The current HPF definition does not, however, permit data arrays to be distributed

directly, to subsets of processors. That is, the target of a distribution directive must be a

processors-name [8, page 26]. Hence we can only achieve the desired distribution either by

aligning the data arrays representing individual grids to parts of a large template, which is

then distributed to the processors, or by aligning each grid to a template of its own, which

has been declared with exactly the size needed to ensure that, after distribution, the data for

the grid is on the desired nmnber of processors. In the latter case, the alignments must be

carefully chosen so that the grids are mapped to different subsets of processors; otherwise,

there would be a serious imbalance of the workload. In practice, both of these solutions

are difficult to achieve, and will generally require a priori precise knowledge of the size of

both the grid and the processor array. These template constructions, and alignlnent and

distribution directives, are unnecessarily complicated and inust be reimplemented for each

modification of the problem. A simpler solution is to adopt the direct approach of Vienna

Fortran, which permits a proccssor-r@rencc [17, page 22] to be the target of a distribution.

Thus a subsection of processors may be specified in a DISTRIBUTE directive, permitting

straightforward descriptions of the desired distributions of the individual grids as shown in

the following code fragment:

!HPF$ PROCESSORS R(128)

REAL G(32,2048)

!HPF$ DISTRIBUTE (*,BLOCK) ONTO R(N:M)::G

2.2 Distribution of Subobjects - Multigrid Codes

A further shortcoming of I|PF is that it does not pernlit subobjects of a data object to be

distributed. We use a siml)le multigrid example to show the kind of restrictions that this

imposes on the choice of distribution for a problem.

('.onsider the following Fortran 90 program segment for a multigrid problem where the

number of grids and their sizes is not known until runtime.

TYPE subgrid

INTEGER xsize, ysize

REAL, DIMENSION(:,:), ALLOCATABLE :: grid

END subgrid

TYPE (subgrid), DIMENSION (:), ALLOCATABLE :: grid_structure

• ° .

READ (*,*) no_of_grids

ALLOCATE (grid _t r_,ctm'e(no_grids))

DO i = 1, no_of_grids

READ (*,*) ix, iy

grid_structure(i)%xsize = ix

grid_st, ructure(i)%ysize = iy

ALLOCATE (grid_structure(i)%grid(ix,iy))

END DO

In this examt)le, each gri(t ix declared as an allocatable array within a derived tyt)e. The

set of all grids is also an allocatable array, where each element is a grid. Thus the number ()f

grids and their individual sizes need not I)e specit]ed mltil runtime. The multiblock al)l)liea-

tion (leseribed in the last subsection also requires similar data structure declarations. HPF

allows us to distribute the array of grids to the processors. However, we may not dist.riblm •

the individual grids across processors, since these are subobjects and their distrilmtion is

exl)licitly l)rohibited [8, page 26].

B_lt a multigrid problem does not exhibit the kind of t)arallelism between individual grids

that is available in mldtil)lock at)plications: the refinement and interpolation steps of the

multigrid at)proach usually require a sequential t)rocessing of grids and it is the 1)arallelism

within a grid which must be exploited. Since this is not possible, we cannot describe a

5

satisfactory distribution for tile above data structures. A more flexible approach to tile
mappingsfor objects and subobjectswould solvethis problem.

2.3 Processor Views

Tile shape of an abstract set of processors is defined in HPF by a PROCESSORS directive.

Given a processor array, R, of rank k onto which a data array (or a template) is to be

distributed, exactly k dimensions of the array must be distributed to the corresponding

(timensions of R. That is, for all array with rank r > k, r- k dimensions must remain

undistributed, which is indicated by the symbol "*", while an array with a rank less than k

caunot be distributed to R at all [8, page 26].

Ill other words, there is no way to view tile same set of abstract processors as a processor

array having a different shape, in particular a different rank.

Consider the following code fragment:

!HPF$

!HPF$

!HPF$

PROCESSORS P2(10,10), PI(100)

REAL A(M,N), B(L)

DISTRIBUTE A(BLOCK,BLOCK)ONTO P2

DISTRIBUTE B(BLOCK)ONTO P1

Here, A is a two dimensional array with the two dimensions distributed onto to tile two

dimensional processor array P2. Meanwhile, B is a one dimensional array distributed onto

the one dimensional processor array P1. Under the HPF definition, since P1 and P2 are of

different shapes, the programmer cannot make any assumption about their relative mapping

onto the physical processor array. What tile programmer may want to do in this example is

to "equivalence" P2(i, j) with P1 (i + (j - 1) * 10), according to standard Fortran conventions.

HPF cannot express this.

Again, Vienna Fortran provides a simple lnechanism to provide "equivalenced" views of

tile same processor set [17, page 20]. Thus, tile above example could be specified in Vienna

Fortran as follows:

PROCESSORS P2(10,10) RESHAPE PI(100)

REAL A(M,N) DIST (BLOCK, BLO(JK) TO P2

REAL B(L) DIST (BLOC'K) TO Pl

I Ising tile RESHAPE clause t)rovides a secondary (and in this case a one-dimensional) view

of the same processor set. This allows different dimensional distributions to be specified for

the same processor set.

A more general solution would allow the specification of alignment between processor

arrays, using a linear function*:

!HPF$ PROCESSORS P2(10,10), Pl(100)

!HPF$ PROCESSOR_ALIGN P2(I,.J) WITH PI(F(I,.J))

This means that P2(I,J) and PI(F(I,J)), where F is a linear function in I and J,

designate tile same abstract processor. Equivalencing, as used ill the above example, is a

special case obtained by choosing F(I,.]) = I + (.] - 1) * 10.

2.4 General Block Distributions - Particle-in-Cell Code

As mentioned ill the introduction, dimensions of data arrays or templates are mat)ped in HPF

by specifying one of a small number of predefined distributions, t)ossibly with an argument.

There are a number of problems for which these mappings are inadequate. In this section,

we consider all application for which HPF's data distributions do not permit satisfactory

load balancing. Here, a generalization of the block distribution gives the user a means to

balance the workload on the target machine during execution.

(lonsider a simulation cocle designed to study the motion of particles in a given domain,

such as t)lasmas for controlled nuclear fusion, or stars and galaxies. The computation at each

time step can be divided into two l)hases. In ttle first phase, a global force field is computed

using the current t)osition of particles. Ill the second phase, given tile new global force field,

new positions of tile particles are determined. Tile t)rogram call be structured by dividing

the underlying domain into (:ells, with each (:ell owning a set of particles. Tlle particles move

t'rom one (:ell to another as they change positions across the domain. Since the computation

in ea(:h ('ell is dependent on the number of particles in tile cell, the workload across the

domain changes as tile comt)utation 1)rogresses.

If tile set of (:ells is represented by an HPF array, then we n(_ed to distribute the cells across

tlle pro('essors such that the work per processor is approximately equal. This means that

the distribution of ttle array across tile processors must reflect the distribution of particles

across (:ells, and thus is a function of values computed at execution time.

Two language features are required to deal with this situation: dynamic redistribu-

tion and irregular data distributions. While HPF satisfies tile first requirement via tile

REDISTRIBUTE directive, it lacks functionality for meeting tile second requirement.

The requirements of this problem can be lnet if we extend tile set of distributions provided

in HPF by general block distributions, as initially implemented in SUPERB [16] and

Vienna Fortran [2, 17].

*This feature has been prot)osed by Robert Schreiber.

General[)lock distributions are similar to the regular block distributions of HPF in that

the index domain of an array dimension is partitioned into contiguous blocks which are

mappedto tile processors;however,the blocksarenot requiredto beof tile samesize.Thus,

general block distributions provide moregenerality than regular blocks while retaining the

contiguity property, which plays an important role in achieving target (;ode efficiency.

(Jonsider a one-dimensional array A, declared as REAL All • u], and assume that there

are N processors pi, 1 < i <_ N. If we distribute A using a general block distribution

(,ENERAL_BLOCh(B), where B is a one-dilnensional integer array with N elements, and

B(i) = .s_ (with s_ > 0 for all i) denotes the size of the i-th block, then processor t)1 owns

the local segment All" l + .s_ - 1], p2 owns All + .s_ • 1 + .st + .s2 - 1] and so on. /3, together

with the index domain of A, completely determines the distribution of A and provides all

the information required to handle accesses to A, including the organization of the required

communication.

A variant of this method determines general block distributions by specifying in /3 the

sequence of upper bounds for the local segments - i.e., Ii + sl - 1,12 + .sl + .s2 -- 1,... rather

than tile segment lengths.

The above scheme can be readily generalized to multi-dimensional arrays, each dimension

of which is distributed by regular or general block.

The example in Figure 1 illustrates a general block distribution applied to the rows of a

two-dimensional matrix A, where tile bulk of work is in the center of the region, reflected by

smaller blocks for the associated processors.

Although the representation of general block distribution requires on the order of the

number of processors to describe the entire distribution, optimization often permits a local

description of the distribution to be limited to just a few processors, with which there will be

communication. Also, the space overhead due to this representation is not large in general,

since most problems do not require a large number of distinct general block distributions.

Arrays distributed in this way can be efficiently managed at compile time as well as

runtinle, allowing the use of the overlap concel)t [7, 16] to optimize communication related

to regular accesses. Finally, codes can be easily parameterized with such distributions: for

example, a procedure with a transcriptivc formal argument* that is supplied with differently

distributed actual arguments can be efficiently compiled if the representation of the argu-

ment's distribution is passed along as a set of additional implicit arguments created by the

compiler [7, 16, 19].

We now show how a general block distribution may be used to implement a PIC, code

t If such an argument is passed by reference, the distribution is left intact, and thus no movement of data
will be necessary [8, page 48].

!HPF$ PROCESSORS R(8)
INTEGER :: B(8)=(/400,400,200,100,100,100,500,800/)
REAL A(2600,100)

!HPF$ DISTRIBUTE (GENERAL_BLOCK(B),*) :: A

400

400

200

100

100

100

500

800

R(I)

R (2)

R (3)
R (4)
R (5)

R (6)

R (7)

R (8)

Figure 1' (_eneral Block Distribution in HPF +

as described above. The progranl in Figure 2 illustrates a simplified version of a PIC, code

expressed in HPF, extended by general block distributions.

Details irrelevant to our discussion are omitted. The cells are represented by the array

FIELD. There are a rnaxinlun_ of N(TELL cells and each cell is constrained to have a max-

imum of NPART particles. FIELD is declared to be DYNAMIC with the first, dimension

initially distributed into regular blocks. The procedure initpo._ determines the initial position

of the particles and places them in the appropriate cells, llsing the number of particles in

each cell, the procedure balance computes the block sizes to be assigned to each processor

and stores these in the array BOUNDS', such that BOUNDS'(p) specifies the block size for

processor p, where 1 <_ p <_ NI;MBER_OF_PRO(TE,S'S'OR,q. This array is then used to

redistribute FIELD, using a general block distribution. The block sizes are selected so that

each l)rocessor has roughly the same number of particles on its local part of the domain.

In each time step (represented by one iteration of the outer loop), the procedure up-

datc_fidd computes the new force field based on the current particle positions. Then, the

procedure update_part is called to update the positions of the particles. Based on the new

9

PARAMETER (NCELL , NPART)

INTEGER BOI_INDS(NI)MBER_OF_PROCESSORS())
REAL FIELD(NCELL,NPART,...)

!HPF$ DYNAMIC, DISTRIBUTE (BLOCK,*,*) .. FIELD

(7 (7ompute initial position of particles

CALL initpos(FIELD, NCELL, NPART, ...)

(7 Compute initial partition of cells

CALL balance(BO[NDS, FIELD, NCELL, NPART, ...)

!HPF$ REDISTRIBUTE FIELD(GENERAL_BLOCK(BOUNDS))

DO k = 1, MAX_TIME

(7 Compute new field

CALL update_field(FIELD, NCELL, NPART, ...)

(7 Uompute new particle positions and reassign them

CALL update_part(FIELD, NCELL, NPART, ...)

(7

!HPF$

Rebalance every lOth iteration if necessary

IF (MOD(k,IO) .EQ. 0 .AND. rebalance()) THEN

CALL balance(BOUNDS, FIELD, NCELL, NPART, ...)

REDISTRIBUTE FIELD(GENERAL_BLOCK(BOUNDS))
ENDIF

ENDDO

Figure 2: High level PIC code in HPF + with general block distributions

positions, the new owner cell for each particle is determined. If a particle has moved from

one cell to another, it is explicitly reassigned. This obviously requires communication if the

new cell is on a different processor. Since this communication is based on the locations of

the current and the new cell, it is highly irregular in nature. Thus, the compiler will have to

generate runtime code using the inspector/executor paradigm [9, 12] to support this particle

motion.

If the number of particles on each processor remains roughly equal for the duration of

the simulation, then load balance will be maintained. Some problems of this kind display

sufficient uniformity such that a simple block distribution will suffice to provide a reasonable

load balance. For other problems, the motion of particles during the simulation may lead to

a severe load imbalance. The code, as shown here, checks whether rebalancing is required (by

10

calling function rcbalancc), on every lOth iteration. If so, a new BOUNDS array is computed

and the cells redistributed to balance tile workload.

2.5 Irregular Distributions

General block distributions provide enough flexibility to meet tile demands of some irregular

computations: if, for instance, tile nodes of an unstructured mesh are partitioned prior

to execution and then appropriately relmmbered, then the resulting distribution can be

described in this manner, ttowever, this approach is not apt)ropriate for each irregular

problem. For example, a data distribution as shown in Figure 3 - which may be the outcome

of a dynamic partitioner cannot be represented in this way. A system based on this kind

of distribution has been developed by Baden [1].

Figm'e 3: An example for an Irregular Block Distribution

Rather than proposing a special syntax fl," this kind of distribution, we will in the follow-

ing subsections deal with a range of mechanisms, at different levels of abstraction, to hamtlc

arbitrarily complex data distributions.

We begin with indirect distribution fuTwlio_s, which allow the specification of a dis-

tribution via a mapping array (Section 2.5.1), and continue with uscr-dcfiTi.cd distributioT_

fllnctioT_s (Section 2.5.2). After discussing an extension of IIPF's INDEPENDENT loop

concept (Section 2.5.3), we give an examl)le of a sweep over an unstructured mesh. l)ase(t on

all three extensions (Section 2.5.4). We conclude with the discussion of language features

that directly support the binding of partitioners to INDEPENDENT loops (Section 2.5.5).

11

2.5.1 Indirect Distributions

Indirect distribution functions can express any distribution of an array dimension that

does not involve replication. Consider the following program fragment in HPF+:

!HPF$ PROCESSORS R(M)

REAL A(N)

INTEGER MAP(N)

°o.

!HPF$ DYNAMIC,DISTRIBUTE (BLOCK) :: A

!HPF$ DISTRIBUTE (BLOCK):: MAP

v Compute a new distribution for A and save it in the mapping array MAP:

t The j-th element of A is mapped to the pTvcessor whose number is stored in MA P(j)

CALL PARTITIONER(MAP, A,...)

.,.

f Redistribute A as specified by MAP:

!HPF$ REDISTRIBUTE A(INDIRECT(MAP))

°..

Array A is dynamic and initially distributed by block. MAP is a statically distributed

integer array that is of the same size as A and used as a mapping array for A; we specify

a reference to an indirect distribution function in the form INDIRECT(MAP). When the

reference is evaluated, all elements of MAP must be defined and represent valid indices for

the one-dimensional processor array R, i.e., they must be numbers in the range between 1 and

M. A is then distributed such that for each j, 1 <_ j <_ N, A(j)is mapt)ed to R(MAP(j)).

In this example, MAP is defined by a partitioner, which will coml)ute a new distribution

for A and assign values to the elements of MAP accordingly. (This distribution will often be

used for a number of arrays in the program).

Indirect arrays were introduced in [10, 12]. They must be supported by a runtime system,

which manages the internal representation of the mapping array and handles accesses to the

indirectly distributed array. The mapl)ing array is used to construct a tran.slation table,

recording the owner of each datum and its local index. Note that this representation has

O(N) elements, on the same order as the size of the array. Most codes require only a very

small number of indirect mappings (this is usually between 1 and 3 distinct mappings). The

PARTI routines [12] represent a runtime library which directly supports indirect distribution

functions, and has been integrated into a number of compilers.

12

2.5.2 User-Defined Distribution Functions

Indirect distribution functions incur a considerableoverheadboth at compile time and at

runtime. A difficulty with this approachis that whena distribution is describedby means

of a mapping array',any regularity or structure that may haveexisted in the distribution is

lost. Thus the compilercannot optimize the ('odebasedoll this complexbut possibly regular

distribution.

User-defined distribution functions (UDDFs) provide a facility for extending the

set of intrinsic nlappings defined in tile language hi a structured way. The specification of a

distribution function introduces a class of distribution types by establishing mappings from

(data) arrays to processor arrays. Such IIDDFs were first defined ill Kali [10] and Vienna

Fortran [17]; the following discussion is based on tile I IDDFs as described in Vienna Fortran.

Syntactically, ll[)DPs are similar to Fortran functions; however, their activation resllll.s ill

tile computation of a dist.riblition rather than in the complltatioli of a value. Apart fiolil this,

no side effects may occur as a result of executing these functions. ITI)DFs have two implicit

formal arguments, representing the data array to be distributed and the processor array

to which tile distribution is targeted. Specification statements for these arguments can be

given llsing the key, words TARGET_ARRAY and PROCESSOR_ARRAY, respectively.

()ther local data. structures nlay be declared as well. UDDFs may contain Fortran execllt.al)le

statements along with at least one distribution mapping statcmc_t which maps tile elements

of the target, ari'ay to the processors.

IlDDFs constitute the most general mechanism foE" specifying distributions: any arbi-

trary inapt)trig between array' indices and processors can be expressed, including partial or

total ret)lication. We illustrate their use by two examples, representing indirect and skewed

distributions.

Example: A UDDF Specifying an Indirect Distributions

The distribution function I.'_I)II_EC7 ', as introduced in the previous section, can I)e easily

expressed by a 17DDF as shown below. For simplicity we assume that A and MAI' have the

same shape.

!itPF$ DFUNCTION INDIRE('T(MAP)

!HPF$ TARGET_ARRAY At*)

!tI['F$ PROCESSOR_ARRAY R(:)

!HPF$ INTEGER MAP(*)

!HPF$ DO I=I,SIZE(A)

13

!HPF$

!HPF$

!HPF$

A(I) DISTRIBUTE TO R(MAP(I))
ENDDO

END DFUNCTION INDIRECT

Example: A UDDF for a Skewed Distribution

Tile UDDF ,5'I(EW,asdefinedbelow,specifiesa two-dimensionalskewedblock distribution,

as may sometinlesbe neededto satisfy tile requirementsfor locality. We assumehere that
M1 divides N1, and M2 divides N2.

!HPF$

!HPF$

!HPF$

!HPF$

DFUNCTION SKEW

TARGET_ARRAY A(0:,0:)

PROCESSOR_ARRAY R(0:,0:)

INTEGER N1,N2,M1,M2

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

NI=UBOUND(A,1)+I; N2=UBOUND(A,2)+I

MI=UBOUND(R,1)+I; M2=UBOUND(R,2)+I

DO l=0,N1

DO J=0,N2

i(I,.J) DISTRIBUTE TO R(I/(N1/M1), MOD(J/(N2/M2)+I,M2+I))

ENDDO

ENDDO

END DFUNCTION SKEW

Tile distribution generated for X, as declared in tile program fragment below, is shown ill

Figure 4.

!HPF$ PROCESSORS R2(8,8)

REAL X(0:7,0:7)

!HPF$ DISTRIBUTE (SKEW), ON TO R2(1::2,1::2) :: X

A facility similar to UDDFs can be provided for user-defined alignment; tlle (implicitly

transferred) processor array of the UDDF must be replaced ill this case by the source array

to which tile target array is to be aligned [17].

14

x(O,O) x(O,l) x(0,2) x(0,3)

x(1,6) x(1,7) x(1,0) x(1,1)

iIi!i!i_!iiii_!_ i_i_)i_i_i___i_il_i___ii_i_i_i_ig_ii_i

x(2,4) x(2,5) x(2,6) x(2,7)

x(3,2) x(3,3) x(3,4) x(3,5)

x(O,4) x(0,5) x(O,6) x(O,7)

x(1,2) x(l,3) x(l,4) x(l,5)

x(2,0) x(2,1) x(2,2) x(2,3)

x(3,6) x(3,7) x(3,0) x(3,1)

x(4,0) x(4,1) x(4,2) x(4,3) x(4,4) x(4,5) x(4,6) x(4.7)

x(5,6) x(5,7) x(5,0) x(5,1) x(5,2) x(5,3) x(5,4) x(5,5)

::::::::::::::::::::::::: ::_:i:?_:]:i:_:ii:_:_:i:!:i:i_!!:i:!:i__:_ _! ?!i_:

x(6,4) x(6,5) x(6,6) x(6,7) x(6,0) x(6,Â) x(6,2) x(6,3)

x(7,2) x(7,3) x(7,4) x(7,5) x(7,6) x(7,7) x(7,0) x(7,1)

Figure 4: A Skewed Distriblttion

2.5.3 Extensions of the INDEPENDENT Loop Concept

Whenever a do loop contains an assignment to an array for which there is at least one indir('ct

access within tile loot) , the compiler will not be able to determine whether tile iterations of

the loop may be executed in t)arallel. Since such loops are common in irregular t)roblems,

and may contain tile bulk of the computation, tile user must assert the indel)eI_(tence of the

do loop's iterations.

For this, HPF t)rovides the INDEPENDENT directive, which asserts that a sul)s('(luent

(1o loo 1) (t()es not contain any loop-carried det)endences [18], allowing the loo 1) it(wations lo

t)(, (_xecuted in paralhq. The INDEPENDENT directive may optionally contain a NEW

clause whicl_ introduces privatc variables that are conceptually local in each iteralion, and

therefor(" cal_l_ot cause loop-carried dependences.

There are two prol_l(,ms with this feature:

• There is no language support to specify the work distribution for the 1()()1), i.('.,

lhe mapl)ing of iterations to processors. This decision is left to the comt)ih'r/r,_nlim('

system.

• Reductions, which perform global operations across a set of iterations, and assign

the result to a scalar variable, violate the restriction on dependences and cannot b(-

used in the loop (note that HPF and Fortran 90 provide intrinsics for som(" important

reductions).

15

The first problem can be solvedby extending the INDEPENDENT directive with an

ON clausethat specifiesthe mapping, either by naming a processorexplicitly or referring

to the owner of an element. The concept of on clause was first introduced ill Kali [10] and

later adopted in Fortran D [6] and Vienna Fortran [2]; a similar proposal was discussed ill

tile HPF Forum but not included in tile language (see [8], Journal of Development, Section

11). For example, in

!HPF$ PROCESSORS R(M)

ooo

!HPF$ INDEPENDENT, ON

DO I= 1, NEDGE

OWNER (EDGE(I,1)), ...

iteration I of tile loop is executed on the processor that owns the array element EDGE(I, 1).

If wt, assume that R(F(I)) is this processor, the above example could also be written in the

forth

!HPF$ PROCESSORS R(M)

!HPF$ INDEPENDENT, ON R(F(I)), ...

DO I= 1, NEDGE

The second problem can be solved by extending tile language with a reduction directiw_

- which is to be permitted within independent loops - and imposing suitable constraints on

the statement which immediately follows it. It could be augmented by a directive specifying

the order in which values are to be accumulated. Note that simple reductions could be

detected by most compilers.

For example, in the code fragment below, the contributions INCR(I)of different iterations

are accumulated in the variables Y(EDGE(I, 5) (where EDGE(I, I) may yield the same value

for different values of I - see Section 2.5.4 for an example with a geometric interpretation):

!HPF$ PROCESSORS R(M)

!HPF$ INDEPENDENT, ON OWNER (EDGE(],I)),...

DO l= 1, NEDGE

.,o

!HPF$ REDUCTION

Y(EDGE(I,1)) = Y(EDGE(I,1)) + INC'R(I)

16

Vietma Fortran providesa languageextensiot_for reduction operations whi<'tl is thor'(+

general,but whi,:h is not a.directive.

2.5.4 Sweep Over An Unstructured Mesh

We now illustrate someof tile languagefeaturesintroduced aboveby rel)roducin,e-;a s(,<lion
of codefroth a two-dimensional|restructured meshEtder solver.

The meshfor this code consists of triangles; values for the flow variables are stored at

their vertices. The computation is implemented as a loop over the edges: the contrit)utiot+

of each edge is subtracted from the value at one node and added to the valm+ at. the other

ito d e.

Figllre 5 ilhlstrates one solution to this prol)lem. The mesh is tel+resented t+y the array

ED(;E, where ED(;E(I, I) and ED(-;E(I, 2) are the node numl)ers at+ the two ends of the

lth edge. The' arra.vs X and Y represent the flow va.rial)les, which associate + a vallle with

each of the NNOI)E node:',.

(Jonsider the distri|mtion of the data across the one-din+ensiot_a.1 array td" l>I'¢Wessors,

H(M). Each of the arra ,,_+_ to be dynamically distributed, since the mesh is to he dis-

t.rilmted at. rmltime, in or_ , +,lance the comptltatiot_al load across the im,ct'ssot's.

The array X is declare .tynamically distribttted with an initial block distribution.

Later in the code, this arra_, ,+ distributed indirectly, using the mat)t)ing array MAP. Tht+

user-specified routine PARTITIONER, whose coda has been omitted from the example, will

generate a mesh partition and store it in MAP.

Y ix also declared with the keyword DYNAMIC and is aligned to X. Whenew+r X is

redistributed, Y is automatically redistributed with exactly the same distribmion ftmct.itm.

(:onsider now how the array EDGE is used in the algorithm. Since the eh,ments of

EDGE are 1)ointers to flow variables in iteration I, X(EDGE(I,1)), X(ED(;E(/,2))

and the corresl)unding CUml)onents of X and Y are accessed - we relate the dist.ril_lttiot_ of

ED(;E to the distribution of X and Y in such a way that EDGE(I,:) is mapl)ed to the same

processor a,s +X'(EDC;E(I, ',)).

This kind of relationshi t) between data. structures occurs it+ many codes, since a mesh is

frequently descril)ed in terms of elements, whereas values a.re likely to t>e accumulated at t.t_'

vertices. It can be simply expressed if we extend the REDISTRIBUTE dit'_'ctivt' as shown

in i.he example.

The computation is specified using an ext.ended INDEPENDENT 1oo1>. The work

distrilmtion is specified by the ON clause: the lth iteration ix to be l+erformed tm the

processor that owns EDGE(I, 1).

17

OAIG'tNAL PAOE I_

oF F,OORILKJALr'rY

!HPF$

,2)

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

PARAMETER (NNODE = ...)

PARAMETER (NEDGE = ...)

PROCESSORS R(M)

,..

REAL X(NNODE), Y(NNODE)

INTEGER MAP(NNODE)

REAL EDGE(NEDGE,2)

INTEGER N1, N2

REAL DELTAX

o..

DYNAMIC :: X,Y,EDGE

DISTRIBUTE (BLOCK) :: X, MAP
ALIGN WITH X :: Y

DISTRIBUTE (BLOCK,*) :: EDGE

,.°

CALL PARTITIONER(MAP,EDGE)

°,°

REDISTRIBUTE X(INDIRECT(MAP))

REDISTRIBUTE EDGE(I,:) ONTO R(MAP(EDGE(I,1)))

°,,

INDEPENDENT, ON OWNER (EDGE(I,1)), NEW (N1, N2, DELTAX)

DO I= 1, NEDGE

.o0

N1 = EDGE(I,1)

N2 = EDCE(I,2)

°°°

DELTAX = F(X(N1), X(N2))

!HPF$ REDUCTION

Y(N1) = Y(N1) -

!HPF$ REDUCTION

Y(N2) = Y(N2)+

END DO

°,o

END

DELTAX

DELTAX

Figure 5: (;ode for Unstructured Mesh in HPF +

" 18

The variables N1, N2 and DELTAX are private, so conceptually each iteration is al-

located a private copy of each of them. Hence assignments to these variables do not cause

flow dependencies between iterations of tile loop.

For each edge, the X values at tile two incident nodes are read and used to compute

the contribution DELTAX for the edge. This contribution is then accumulated into the

values of Y for the two nodes. But since multiple iterations will accumulate Y values at each

node, different iterations may write to the same array elements. As a consequence, we have

indicated that these are reductions.

Tile dominating characteristic of this code, fi'om the point of view of compilation, is that

the values of X and Y are accessed via the edges, hence a level of indirection is involved.

In such situations, either tile mesh partition must be available to and exploitable by the

compiler, or runtime techniques such as those developed in the framework of the inspector-

c:cccutor paradigm [9, 12] are needed to generate and exploit the communication pattern.

2.5.5 Sweep Over Unstructured Mesh: Revisited

The code for tile unstructured Euler solver discussed in the previous section represents a low-

level approach to parallelization, in which the programmer assumes full control of data and

work distributions, using tile ON clause, and indirect distribution fimctions; a user-defined

partitioning routine explicitly constructs a mapping array which can then be referred to.

This process may be further automated. Recent developments in runtime support tools

and compiler technology, such as the CHAOS system developed at the University of Maryland

[11] and integrated in tile Vienna Fortran Compilation System, show how a higher level

language interface may be provided in which control over the data and work distributions

in an INDEPENDENT loop can be delegated to a combination of compiler and runtime

system. We illustrate this approach by the example in Figure 6 which uses an ad hoc

notation.

Tile use-clause of tile INDEPENDENT loop enables the programmer to select a parti-

tioner from those provided in the environment (in the example, this is SPECTRAL_PART)

and tile arrays (in the example, X) to which it is to be applied. SPECTRAL_PART is called

with implicit arguments specifying the iteration space of the INDEPENDENT loop and

the data flow pattern associated with tile use of X in the loop. The call has two effects:

First, a new distribution is computed for X, and X along with its associated secondary ar-

ray, Y, is redistributed accordingly. Secondly, a new work distribution is determined for the

INDEPENDENT loop, based on the combined objectives of minimizing load imbalances

and maximizing locality.

19

PARAMETER (NNODE)
PARAMETER (NEDGE)

!HPF$ PROCESSORS R(M)

REAL X(NNODE), Y(NNODE)
REAL E[)GE(NEDGE,2)
INTEGER N1, N2
REAL DELTAX

,,,

!HPF$ DYNAMIC :: X,Y,EDGE

!HPF$ DISTRIBUTE (BLOC'K) :: X
!HPF$ ALIGN WITH X :: Y

!HPF$ DISTRIBUTE (BLOCK,*) :: EDGE

!HPF$ INDEPENDENT, NEW (N1, N2, DELTAX), USE(SPECTRAL_PART(X))

!HPF$ DO 1= 1, NEDGE

N1 : EDGE(I,1)
N2 = EDGE(I,2)

DELTAX = F(X(NI), X(N2))

!HPF$ REDUCTION

Y(N1) =Y(N1)-
!HPF$ REDUCTION

Y(N2) = Y(N2) +

END DO

,,o

END

DELTAX

DELTAX

Figure 6: Code for Unstructured Mesh: Version 2

2O

The actions describedabove representan extensionof tile inspector in the inspector-

executor paradigm [9, 12] and are performed before the actual execution of tile loop. Note

that tile execution of the INDEPENDENT loop implicitly redistributes X and Y and that

the arrays retain their new distributions after tile loop has COlnpleted execution.

()ther constructs may be useful in conjunction with the specification of a partitioner:

for example, tlle user may wish to specify the array whose usage within tile loop should

form tile basis of the loop's work distribution. It may somethnes be desirable to restore the

distribution of one or more of tile newly partitioned arrays after the loop has executed. If

the partitioner is to be invoked at intervals throughout tile program's execution, a condition

for its invocation may be needed; this may depend on the value of the loop variable or some

other program variable. Finally, it may be be necessary to combine this approach with low-

level control, in which case some means of accessing the map array hnplicitly constructed

for irregularly partitioned arrays such as X should he provided.

Note that rather than attaching such attributes to a number of INDEPENDENT loops

individually, language features can be defined that associate a partitioner with the whole

program or a set of loops. We do not discuss their syntax here.

2.6 Libraries

Control of Dynamic Data Distributions One of tile features that HPF has in common

with some of its predecessors (ill particular, Kali [10], Fortran D [6], and Vienna Fortran

[2]) are dyuamic data distributions. However, compared with Vienna Fortran, HPF has only

rudimentary facilities for controlling this powerful feature - with significant consequences for

tile comt)iler as well as for the target code efficiency. It is possible to provide constructs for

obtaining more precise information on distributions at compile time. Vienna Fortran provides

the RANGE attribute and the DCASE statement, a generalization of the Fortran 90 case

statement that allows the association of blocks of code with. a combination of distribution

types of a selected set of arrays. We show by means of an example below how these constructs

can provide the compiler and/or runtime system with valuable information regarding the

distributions of dynamic or inherited arrays.

If a formal array argument inherits its distribution from the actual argument associated

with it at runtime (via a transcriptive dist-format-clause), then the compiler may not have

any information on the distributions which it will assume. This has consequences for the

efficiency of tile code it generates.

Simt)le language extensions may alleviate this problem. If the user knows that only a few

distributions will occur for a specific set of formM arguments, an additional directive wouht

enable this information to be provided to the compiler. Vienna Fortran has this feature in

21

tile form of the RANGE clause.The examplebelow follows the Vienna Fortran syntax, in

which inheritanceof a distribution is specified by an asterisk. Only the specified distributions

may actually occur for the array A at runtime.

SUBROUTINE RANGE_EG (A,...)

REAL A(N,M) DIST(*) RANGE((BLOCK,BLOCK), (BLOC'K,CYC'LIC(100)))

Further, the ef[]ciency of the (:oml)utation within the subroutine may depend very heavily

()n the actual distributions of the arguments, thus yielding good performance in some cases

and w_ry poor performance in others.

There is a specific difficulty in resolving two legitimate demands of a general purpose

subroutine: it should handle a variety of different arguments, which may be differently

distributed, and it should handle them efticiently. Redistribution at procedure boundaries

may be costly, and hence should be avoided if possible. Vienna Fortran provides a construct

which may be used in this situation: the DCASE construct, which is modeled along the

lines of the (_ASE construct in Fortran 90. It enables the selection of a block of statements

according to the actual distribution of one or more arrays. In particular, this also gives the

compiler knowledge of the distribution which will reach the encapsulated segment of code.

SUBROUTINE MMUL (A,B,C,N,M,L)

REAL A(N,M),B(M,L),C(N,L) DIST(*)

INTEGER LEN, LSUB

SELECT DCASE (C,A):

CASE ((BLOCK,:),(BLOCK,:)) :

IF (M*L .LE. MAXSIZE) THEN

CALL MATMUL(A,B,C,N,M,L)

ELSE LEN = L / $NP

DO J = l, SNP

CALL MATMI_rL1 (A,B,C,N,M,L,LEN,J)

END DO

ENDIF

CASE ((BLOCK,BLOCK),(BLOCK,*)) :

...

CASE DEFAULT :

END SELECT

22

In tile abovecode, the matrix operation is handledin a specificway dependingoll how

the actual argument arraysaredistributed;t. Ill this way',wecan insert appropriate codeor

('all further subroutinesasrequired. The compilerhaspreciseinformation on the distribution
functionsof the selectedarraysfor the block of statementswithin the cases. ()lily (me of the

case alternatives is executed; if none of the other specifications lllatch, thell the defaldt (it"

present) is selected. The cases are examined in the order in which they occur textually. The

first distribution expression is compared with the actual distribution of (7, and the sec(m(l

with that of A. If (7 is distributed by block in tile first dimension and not al. all in the

second, and A likewise, then the first case is selected and its (:ode executed. ()therwise, t.hc

distribution of (_is then compared with the next case: if it is distributed by block in both

dimensions, then if A is distributed by block in the first dimension, this case is seh,ct(,d.

An "*" matches any distribution whatsoever. A test may be associated with a side el[eel.

T(I "tIf an array distribution is compared with ((..,'_ .LIC(K)), for example, then if the actual

distribution is in(tee(t cyclic, tile variable K is set to tile value of its wi(ttll.

2.7 Data Distribution and Alignment - Other Issues

There are a nulnber of other issues with the sl)ecification of data distribution and alignm('nt

in current tlPF which we have not discussed in this paper. In the following, w(' point ollt

some flaws an(t gaps in tile basic language definition. This relates specifically to processor

declarations, teml)lates, and the procedure interface.

As already mentioned earlier in Section 2.3, different processor arrangements intro-

duced in a PROCESSORS directive are not related to each other, excepl for l.lw case where

identical shapes are used [8,])age 40]. As a consequence, the semantics of examples such as

tile one on top of page 49 of the HPF language draft:

!ItPF$ DISTRIBUTE POLYHYMNIA* ONTO ELVIS

may not be well defined, if the size of ELVL5' is different from the size of tim processors

arrangement to which the (:orresponding actual argument is distributed.

The use of the TEMPLATE directive for declaring templates to which data may 1)(,

aligned introduces several additional problems. The size of templates is determined 1)y a

specitication expression, and hence templates cannot be used for describing the alignmenl of

a lh)catabl(" arrays. Furthermore, since templates are not first (:lass objects in the language,

they ('am_ot be passe(l across procedure l)oundaries, and thus do not provide sutti('i('nt g;en-

erality to describe the distributions and alignments of procedure arguments. |IPF tries to

tln Vienna Fortran SNP is an intrinsic flmction which returns the number of processors executing the

program

23

alleviate this problem by introducing the INHERIT directive, which is supposedto align

a dummy argument "to a copy of the template of the correspondingactual argument in

the sameway that the actual argument is aligned" [8, page44]. This makesthings even

worse,since there are a number of important cases- including actual argmnentsthat are

array expressions- wherethe languagedoesnot specify tile meaningof this directive; fur-

thermore, there is no conceivableFortran 90-orientedsyntax that allowsthe specificationof

a descriptive dist-format-clause in a situation where actual argument templates of different

dimensions are mapped at different call sites to a given dummy argument.

A more detailed discussion of the problems associated with the TEMPLATE directive,

along with a proposal for an alternative mapping scheme without templates is given in [3].

Procedure boundaries pose other problems as well, such as the restriction of not

allowing array reshaping for distributed arguments. This causes severe problems in porting

sequential Fortran codes which often use reshaping. Also, data arrays when passed as actual

arguments are always remapped back to their original distrilmtion on returning from a

procedure call. Thus, any redistribution of data in a procedure cannot affect the distribution

of the actual argument. This provides a clean interface between procedure calls; however,

there are situations (such as unstructured grids), where it is more convenient to write a

separate routine which computes the new distribution of an array argument and redistributes

it.

3 Integration of Task With Data Parallelism

With tile rapidly growing computing power of parallel architectures, the complexity of simu-

lations developed by scientists and engineers is increasing fast. Many advanced applications

are of a multidisciplinary and heterogeneous nature and thus do not fit into the data t)arallel

paradigm represented by HPF, Vienna Fortran and similar languages.

Multidisciplinary programs are formed by pasting together modules from a variety, of

related scientific disciplines. For example, the design of a modern aircraft involves a variety of

interacting disciplines such as aerodynamics, structural analysis and design, propulsion, and

control. These disciplines, each of which is initially represented by a separate program, must

be interconnected to form a single multidisciplinary model subsuming the original models

and their interactions. The parallelism both within and between the discipline models needs

to be exposed and effectively exploited.

In this section, we outline the salient features of the language OPUS, an extension of

Fortran 90, which addresses this issue [4]. OPUS provides a software layer on top of data

parallel languages, designed to address the "programming in the large" issues as well as the

24

parallel performanceissuesarising in complex multidisciplinary al)plications. A program
executesas a system of tasks which interact by sharing access to a set of Shared Data

AbstractioT_s (SDAs). SDAs generalize Fortran 90 modules by including features from ol)ject-

oriented data bases and monitors in shared-memory languages. They can be used to create

persistent shared "objects" for communication and synchronization between coarse-grained

parallel tasks, at a much higher level than simple communication channels transferring bytes

between tasks.

A task is spaumcd by activating a subroutine with a list of arguments all of which must 1)e

of intent IN. Tasks are asynchronously executing autonomous activities to which rcso_rcc._

of the system may be allocated. For example, the physical machine on which a task is to be

executed, along with additional requirements pertaining to this machine, may be specitie(l

at the time a task is created.

Tasks may embody nested parallelism, for example by execuling a data parallel ttPF

program, or 1)3' coor_tinating a set of threads performing different f,ulctions on a shared data

set.

An SDA consists of a set of data structures along with the methods (proced,u'es) which

manipulate this data. A set of tasks may share data by creating an SDA instance of appro-

priate type, and making it accessible to all tasks in the set. Tasks may then asynchrono,,sly

call the methods of the SDA, with each (;all providing exclusive access. (_ondition clauses

associated with methods and synchronization facilities embodied in the methods allow tile

formulation of a range of coordination strategies for tasks.

The state of an SDA can be saved on external storage for later reuse. This facility can be

seen as providing an l/O capability for SDAs, where in contrast to conventional byte-oriented

1/() the structure of the object is preserved.

()ther Fortran-lmsed approaches to the problem of combining task with data parallelism

include the programming languages FortraT_ M [5], which provides a message-passing facility

in tile context of a discipline enforcing determinism, and f.r [14], which allows Ill(- creatio,l

of parallel tasks that ('all communicate at the time of task creation and task termination l)y

sharing arguments. [)P(_ [13], based on C, uses a mechanism modeled on (? file str,wtures

to support message passing between data parallel tasks.

4 Conclusion

In this paper, we have evaluated the capabilities of High Performance Fortran for express-

ing data parallel programs in an efficient manner. Based on tile analysis of a number of

advanced applications - including multiblock codes, particle-in-cell ,-odes, and sweeps over

25

unstructured meshes- it wasshownthat HPF in tile current form doesnot provide suffi-

cient functionality to implement theseproblemsin an efficientmanner. The paper proposes

a rangeof languagefeatures,with a particular emphasison the problemof distributing data

and work to the processorsof a machine. Thesefeatures span a broad spectrum, ranging

from well-understood and efficient constructs such as data distribution to processorsub-
sets and general block distributions to powerful facilities for binding dynamic partitioners

to INDEPENDENT loops, which automatically distribute data and work. Furthermore,

featuresfor task parallelismand its integration with data parallelism werealsodiscussed.

If HPF's functionality is to be successfullyextendedin the directions neededto support

theseadvancedapplications, it will be necessaryto revisethe basiclanguageand clarify the

semanticsof a numberof crucial features,in particular processorarrays, templates,and the
procedureinterface.

References

[I]

[2]

[3]

[4]

S. Baden. Programming Abstractions for Dynamically Partitioning and Coordinating

Localized Scientific Calculations Running on Multiprocessors. SIAM J. Sci. and Stat.

Computation,12(1), January 1991.

B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific

Programming 1(1) :31-50, Fall 1992.

B. Chapman, P. Mehrotra, and H. Zima. High Performance Fortran Without Templates:

A New Model for Data Distribution and Alignment. Proc. Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, San Diego (May 19-

22, 1993), ACM SIGPLAN Notices Vol. 28, No. 7, pp.92-101, July 1993.

B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A Software Architecture

for Multidisciplinary Applications: Integrating Task and Data Parallelism. Pro(:. CON-

PAR'94, Linz, Austria, September 1994. Also: Technical Report TR 94-1, Institute for

Software Technology and Parallel Systems, University of Vienna, Austria, March 1994

and Technical Report 94-18, ICASE, NASA Langley Research Center, Hampton VA

23681.

[5] I. T. Foster and K. M. (;handy. Fortran M: A Language for Modular Parallel Pro-

gramming. Technical Report MCS-P327-0992 Revision 1. Mathematics and (_omputer

Science Division, Argonne National Laboratory, .lune 1993.

26

[6] G. Fox,S.Hiranandani, K. Kennedy,C. Koelbel,U. Kremer,C. Tseng,and M. Wu. For-
tran D languagespecification.Departmentof Computer ScienceRiceCOMP TR90079,

Rice l_niversity, March 1991.

[7] H. M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessin9 Sys-

tems. PhD thesis, University of Bonn, December 1989.

Is]

[9]

[10]

High Performance Fortran Forum. High Performance Fortran Language Specification

Version 1.0. Technical Report, Rice University, Houston, TX, May 3, 1993. Also avail-

able as Scientific Programming 2(1-2): 1-170, Spring and Summer 1993.

(_. Koelbel and P. Mehrotra. (_ompiling global name-space parallel loops for distributed

execution. IEEE Transactions on Parallel and Distributed ,5'gstems, 2(4):440-451, Oc-

tober 1991.

P. Mehrotra and J. Vail Rosendale. Programming distributed memory architectures

using Kali. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances

in LaTzguages aTzd (7ompilers for Parallel Processing, pp. 364-384. Pitman/MIT-Press,

1991.

[11] R. Ponnusanly, J. Saltz, A. C'houdhary. RuntiIne Compilation Techniques for Data

Partitioning and Communication Schedule Reuse. Technical Report, UMIACS-TR-93-

:/2, University of Maryland, April 1993.

1 1:_ •[12] J. Saltz, K. (,rowl y, R. Mirchandaney, and H Berryman. Run-time scheduling and

execution of loops on message passing machines. Journal of Parallel and Distributed

Uomputing, 8(2):303 312, 1990.

[14]

[15]

B. Seevers, M. J. Quinn, and P. J. Hatcher. A parallel programming environment

supporting multiple data-parallel modules. In WorksholJ on Languages, Compilers and

Run-Time Environments for Distributed Memor9 Machines, October 1992.

.J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting Task and Data Par-

allelism on a Multicomputer. Proc. Fourth ACM SI(IpLAN Symposium on Principles

and Practice of Parallel Programming, San Diego (May 19-22, 1993), ACM SIGPLAN

Notices Vol. 28, No. 7, .July 1993.

V. N. Vatsa, M. D. Sanetrik and E. B. Parlette. Development of a flexible and efficient

multigrid-based multiblock solver; AlAA-93-0677. Proceedings of the 31st Aerospace

,5'cieT_ces Meetin 9 and Ezhibit, January, 1993.

27

[16] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automaticMIMD/SIMD
parallelization. Parallel (;omputing, 6:1-18, 1988.

[17] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a

language specification. I(_ASE Internal Report 21, I(_ASE, Hampton, VA, 1992.

[18] H. Zima and B. (_hapman. Supercompilcrs" for Parallel and Ve:ctor ('omputer,s. A(.IM

Press Frontier Series, Addison-Wesley, 1990.

[19] H. Zima and B. Chapman. Compiling for Distributed Memory Systems. Proceedings

of the IEEE, Special Section on Languages and Compilers for Parallel Machines, pp.

264-287, February 1993. Also: Technical Report ACPC'/TR 92-16, Austrian Center for

Parallel C,omputation, November t992.

28

REPORT DOCUMENTATION PAGE Formapp.... d
OMB No 0704-0188

Public reportingburdenfor thiscollectionof information isestimatedto average] hourperresponse,includingthe time for reviewinginstructions,searchingexistingdatasources.
gathering andmaintaining the dataneeded,andcompletingandreviewingthe co ectonof informaton Sendcommentsregardingthis burdenestimate or anyotheraspectof th_s
collectionof information,including suggestionsfor reducingthisburden to Washinglon HeadquartersServces Directorate for InformationOperationsand Reports 1215Jefferson
Davis flighway. Suite 1204 Arrington,VA 22202 4302, and to the Office of Management and Budget,Paperwork ReductionProJect (0704-0188).Washington D'C20503

I. AGENCY USE ONLY(Leave blank.) 2. REPORT DATE

May 1994

4. TITLE AND SUBTITLE

EXTENDING HPF FOR ADVAN(_ED

DATA PARALLEL APPLI(_ATIONS

6. AUTHOR(S)

Barbara Chatmlan

Piyush Mehrotra

Hans Zima

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for C,omputer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Haml)ton , VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lan_4]ey Research Center

Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

Submitted to IEEE Parallel and Distributed Technology

12a. DISTRIBUTION/AVAILABILITY STATEMENT

U ncla_ssified Unlimited

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

Subject Category 61

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 94-34

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA (:R-194913

ICASE Report No. 94-34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The stated goal of High Performance Fortran (HPF) was to "address the problems of writing data parallel programs

where the distribution of data affects performance". After examining the current version of the language we are led

to the conclusion that HPF has not fully achieved this goal. While the basic distribution functions offered by the

language - regular block, cyclic, and block cyclic distributions - can support regular numerical algorithms, advanced

applications such as particle-in-cell codes or unstructured mesh solvers cannot be expressed adequately. We believe

that this is a major weakness of HPF, significantly reducing its chances of becoming accepted in the numerical

community. The paper discusses the data distribution and alignment issues in detail, points out some flaws in the

basic language, and outlines possible future paths of development. Furthermore, we briefly deal with the issue of

ta.sk parallelism and its integration with the data parallel paradigm of H PF.

14. SUBJECT TERMS

Data parallel programming, High Performance Fortran, data distributions, dynamic
redistributions.

11. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOf

OF THIS PAGE

Unclassifled

19. SECURITY CLASSIFICATIOP
OF ABSTRACT

15. NUMBER OF PAGES

30

16. PRICE CODE

A03

20. lIMITATION

OF ABSTRACT

Standard Form 298(Rev.
Prescribed by ANSI Std Z39-18
298-102

